驾驶员疲劳预警系统解读

驾驶员疲劳监测| 2022-10-08

疲劳预警系统的组成

疲劳预警系统一般是由信息采集单元、电子控制单元和预警显示单元等三部分组成。

信息采集单元通过传感器采集驾驶员信息和车辆状态信息。其中,驾驶员信息包括驾驶员的面部特征、眼部信号、头部运动性等。车辆状态信息包括转向盘转角,行驶速度、行驶轨迹等。

基于生理指标检测疲劳驾驶

驾驶员在疲劳状态下的一些生理指标,如脑、电、心、电、脉搏、呼吸等,都会偏离正常的状态,因此可以通过生理传感器去检测驾驶员这些生理指标,来判断驾驶员是否处于疲劳状态。

1.脑电信号的检测,脑电信号是人脑技能的宏观反应,利用脑电信号能够反映出人体的疲劳状态,客观并且准确。

2.心电信号检测。心电图指标主要包括心率和心率变异性等。其中心率信号综合反映了人体的疲劳程度和任务与情绪的关系,心率变异性是心脏神经活动的紧张度和均衡度的综合体现。

3.肌电信号检测。通过肌电信号的分析,反映人体的疲劳程度。肌电图的频率,随着疲劳的产生和疲劳程度的加深,呈现出下降的趋势,而肌电图的幅值增大则表明疲劳程度的增长,该方法测试简单,结论也较明确。

4.脉搏信号检测。根据人体精神状态的不同,心脏活动和血液循环也会有差异,脉搏实际上反映的就是心脏和血液的循环。因此利用脉搏波去检测驾驶员的疲劳状态,是具有可行性的。

5.呼吸信号的检测。人体疲劳状态的一个重要表现就是呼吸频率的降低,呼吸变得平稳。

基于生理反应检测疲劳驾驶

1.通过眼睛特征检测驾驶员的疲劳程度,不会对驾驶员的行为带来任何的干扰,因此成为这一领域现行研究的热点。

2.视线方向的检测。把眼球中心与眼球表面亮点的连线定为驾驶员的视线方向,正常状态下驾驶员正视车辆的运动前方,同时视线方向移动速度比较快;疲劳时,驾驶员视线方向的移动速度会变慢,表现出迟钝的现象,并且视线轴会偏离正常的位置。

通过摄像头获取眼睛的图像,对眼球建模,把视线是否偏离正常范围,作为判别驾驶员是否疲劳驾驶的标准。

3.嘴部状态的检测。人在疲劳时往往有频繁的打哈欠的动作,如果检测到哈欠的频率超过预定的阈值,可判断驾驶员已经处于疲劳状态,基于此原理可以完成对驾驶员的疲劳检测。

4.头部位置的检测。驾驶员在正常驾驶和疲劳驾驶时,其头部位置是不同的。可以利用驾驶员头部位置的变化,检测疲劳程度,利用头部位置传感器对驾驶员的头部位置进行实时的跟踪,并根据头部位置的变化规律,判定驾驶员是否疲劳。

基于驾驶员生理反应特征的检测方法,优点是表征疲劳的特征直观明显,并可实现非接触测量,不足之处在于检测识别的算法复杂,疲劳特征提取困难,且检测结果受光线变化和个体生理状况的变化影响较大,对技术的要求很高。