大数据分析及工具应用

| 2022-09-08 admin

大数据分析及工具应用_数据分析

大数据分析及工具应用_分析模型_02

大数据分析及工具应用_数据分析_03

大数据分析及工具应用_数学理论_04

大数据分析及工具应用_分析模型_05

大数据分析及工具应用_数据分析_06

大数据分析及工具应用_数据_07

大数据分析及工具应用_数据分析_08

大数据分析及工具应用_分析模型_09

大数据分析及工具应用_数据挖掘_10

数据分析即从数据、信息到知识的过程,数据分析需要数学理论、行业经验以及计算机工具三者结合

  • 工具支撑

各种厂商开发了数据分析的工具、模块,将分析模型封装,使不了解技术的人也能够快捷的实现数学建模,快速响应分析需求。

  • 数学&统计学知识

数据分析的基础,将整理、描述、预测数据的手段、过程抽象为数学模型的理论知识

  • 机器学习

不需要人过多干预,通过计算机自动学习,发现数据规律,但结论不易控制。

  • 传统分析

在数据量较少时,传统的数据分析已能够发现数据中包含的知识,包括结构分析、杜邦分析等模型,方法成熟,应用广泛,本文不展开介绍

  • 数据挖掘

数据挖掘是挖掘数据背后隐藏的知识的重要手段

  • 分析误区

不了解分析模型的数学原理,会导致错误的使用模型,而得出错误的分析结论,影响业务决策,因此在选用分析模型时,要深入了解该模型的原理和使用限制

  • 行业经验

行业经验可在数据分析前确定分析需求,分析中检验方法是否合理,以及分析后指导应用,但行业特征不同,其应用也不同,因此本文不展开介绍